

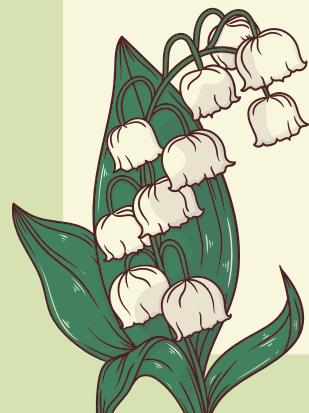
Triggering the Trap: How Venus Flytraps Sense Their Prey

Tuesday, December 3, 11:30

GROUP 11: Stefan Saboura, Abigail
Barnes, & Emily Graham

Abstract

The venus flytrap is a **carnivorous plant** that lives in the swamps of the Carolinas. These plants function by sensing insect prey with **trigger hairs**, which are attached to lobe cells. When triggered correctly, a **flow of ions** occurs, which alters the potential of the cells and their charge. This is followed by the development of an **osmotic gradient**, which increases **turgor pressure** in **midrib cells** at the base of the plant, causing them to invert, which rapidly shuts the plant's leaves. When the prey is captured, the plant uses **signal pathways** to decompose it and absorb its nutrients.


Introduction

- Venus flytraps are **plants**, and therefore,
 - They do NOT have a central nervous system
- The **action potential** CANNOT be generated by neurons

So what generates the action potential necessary to close the venus fly trap on its prey?

ION FLOW

Introduction

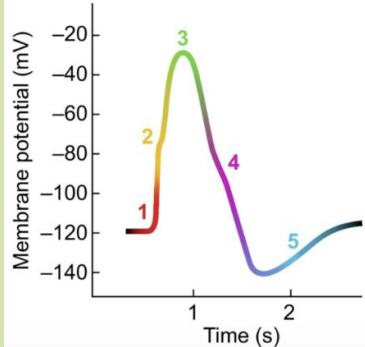
- Venus flytraps are one of more than 600 species of **carnivorous plants**- all of which generate action potentials without a nervous system.
- The soil in the natural habitat of the venus flytrap **does not contain enough nutrients** for their survival. This is why they rely on insects as a nutrient source in addition to the energy gained from photosynthesis.

<http://www.youtube.com/watch?v=bPQsVY6rduY>

Sensory Transduction

The trigger hairs on the plant act as **mechanoreceptors**. Induced by touch, the trigger hairs' displacement provokes an **ion cascade**, generating an **action potential** (Hedrich, R. & Kreuzer, I.)

calcium ion influx
leads to
depolarization


release of K^+ results in
turgor loss in the motor cells
of the inner leaflet

open (**concave**) trap
shape flips to closed
(**convex**) shape

calcium drops, anion channel
deactivates, **K^+ and H^+ are**
released, and the cell **repolarizes**

pressure balance between
inner and outer leaflet
collapses

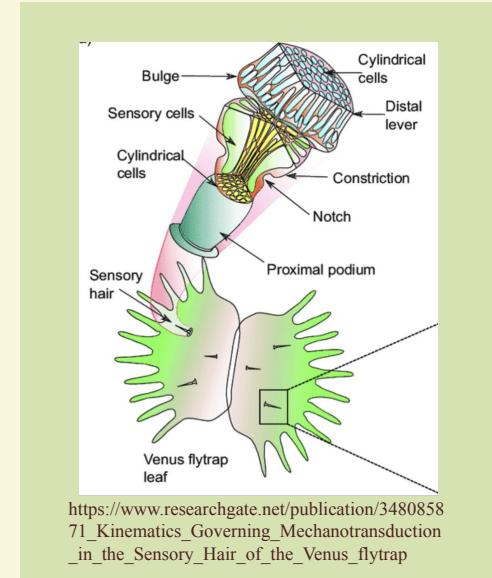
Sensory Transduction

<https://doi.org/10.1111/nph.19113>

AP phase	Ion flux	Transporters involved
1	Increase in $[Ca^{2+}]_{cyt}$, initial depolarization	Ca^{2+} influx and Ca^{2+} -induced Ca^{2+} release from the ER
2	Ca^{2+} -dependent Cl^- efflux	DmALMT9/12
3	K^+ efflux	DmSKOR
4	H^+ efflux	DmAHA4
5	Re-uptake of K^+ and Cl^-	DmHAK5, NRT-type anion/ H^+ cotransporter


<https://doi.org/10.1111/nph.19113>

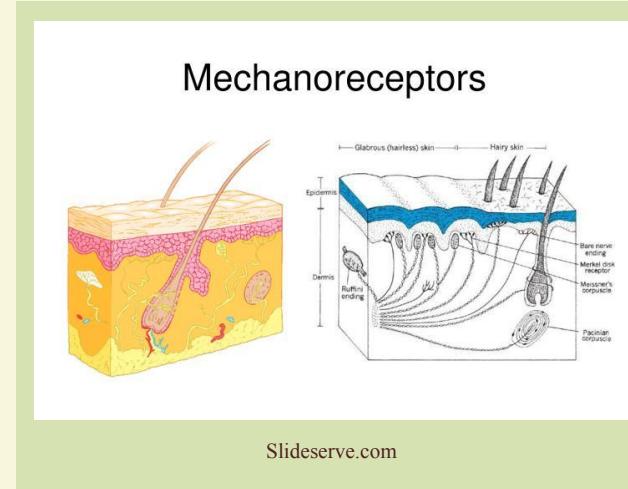
- The **changing membrane potential** is the main supply of energy for the action potential (Hedrich, R. & Kreuzer, I.)
- Rather than neuron signalling, **ion “signalling”** alters this membrane potential and generates flux and charge



Sensory Transduction

- As the cells move through the phases of the action potentials, **depolarization and repolarization** occur (Hedrich, R. & Kreuzer, I.)
- These changes in polarity cause the **pumps to switch on and off** from activated to deactivated, and vice versa

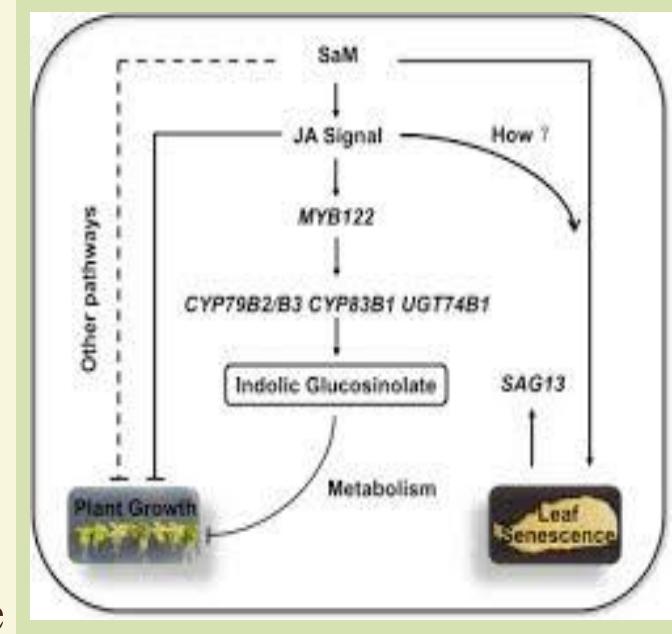
- When a **calcium threshold** is reached, the **electrical signal** can be triggered...


https://www.researchgate.net/publication/348085871_Kinematics_Governing_Mechanotransduction_in_the_Sensory_Hair_of_the_Venus_flytrap

Signal Transmission

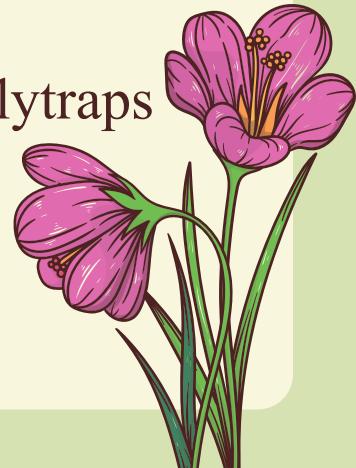
When there is enough of a **difference in voltage** in the mechanosensitive ion channels, mechanotransduction occurs in the sensory hair.

- This causes an **electrochemical response** at the hair base, which spreads to the lobe cells. (Saikia et al. 2021)
- As this electrical charge moves towards the center of the trap, it opens **specialized pores** in the outermost layer of the trap's cells, allowing water to rush from cells on the inside of the lobes to cells on the outside. The dramatic change in cell **turgor pressure** flips the **lobes**, which snap shut. (Jabré, Ferris. 2010.)


Signal Transmission

- The **flow of Ca ions** into a midrib cell causes water to rush into the vacuole (**osmotic gradient**), raising turgor pressure. (botany.org)
- When the pressure is high enough, the **midrib cells invert**.
- The trap snaps shut!
- As the prey fights more, the trap closes tighter.
 - More pressure means more cells invert.

Signal Transmission


- Upon closure of the trap, **glands** covering its inner surfaces are activated
- Prey-induced **haptoelectric stimulation** activates the **touch hormone jasmonate (JA)** (Scherzer, 2017)
- The JA signal pathway initiates the secretion of an acidic **hydrolase** mixture
 - This **decomposes** its prey which allows the fly trap to absorb its nutrients (Scherzer, 2017)

<https://www.sciencedirect.com/science/article/pii/S0168945217300869>

Fun Facts!

- The venus flytrap is the **only member of its genus** (*Dionaea muscipula*)
- Venus flytraps are native to only **North and South Carolina**, specifically in a 75-mile radius around Wilmington, NC.
- **Digestion** of an organism can take 3-7 days, and venus flytraps go about 1-2 months between meals
- Venus flytraps can live for up to **20 years**

Works Cited

Dionaea muscipula - The Venus Flytrap. (n.d.). Botany.org.

<https://botany.org/home/resources/carnivorous-plants-insectivorous-plants/dionaea-muscipula-the-venus-flytrap.html>

Ferris, Jabr. 2010. *How does a Venus Flytrap Work?* Sciencline.

<https://sciencline.org/2010/03/how-does-a-venus-flytrap-work/>

Hedrich, R., & Kreuzer, I. (2023). Demystifying the Venus flytrap action potential. *New Phytologist*, 239(6), 2108–2112. <https://doi.org/10.1111/nph.19113>

Saikia, E., et al. (2021). Kinematics Governing Mechanotransduction in the Sensory Hair of the Venus flytrap. *INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES*, 22(1), 280.

<https://doi.org/10.3390/ijms22010280>

Scherzer, S., Shabala, L., Hedrich, B., Fromm, J., Bauer, H., Munz, E., Jakob, P., Al-Rascheid, K. A. S., Kreuzer, I., Becker, D., Eiblmeier, M., Rennenberg, H., Shabala, S., Bennett, M., Neher, E., & Hedrich, R. (2017). Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. *Proceedings of the National Academy of Sciences*, 114(18), 4822–4827.

<https://doi.org/10.1073/pnas.1701860114>